
Ideality, TRIZ and Software Design –
Case Study: Software Product for Identity Security

Navneet Bhushan

Hexaware Innovation Labs,

Hexaware Technologies,
Chennai, India

http://www.hexaware.com
Email: navneetb@hexaware.com

Abstract
Ideality as defined by Theory of Inventive Problem
Solving (TRIZ) starts with a clear articulation of
function to be achieved by the system. Once it is
described, ideality is defined as function achieved
without cost and with no negative impact on the system.
Typically this trigger leads to strong solutions whereby
the system achieves the desired function on its own –
may be through the use of existing resources. Defining
ideality in such terms for software products is inherently
difficult due to evolutionary nature of the software
systems. It is rarely the case that software system
remains to the confines of functions that it was initially
designed for. Invariably a software system evolves
through addition of multiple functions or capabilities
throughout its life. In fact, the graceful degradation of
performance specific to the existing function of an
evolving software system is more of a norm rather than
exception. Further, it is really the evolution of its
structure that helps the software system to perform new
functions through addition of more and may be different
pieces of structure to the system. In such cases, we
propose besides the ideality as defined by function,
ideality of the structure should also be taken into
account. We propose the use of System Complexity
Estimator and System Change Impact Model (SCE-
SCIM) framework to take care of ideality of software
systems. The paper describes the design process of a
recent software product for identity securing developed
at Hexaware Innovation Labs. The use of ideality from
structural perspectives led to much cleaner design
which is easier to maintain and evolve then the existing
design.

Introduction

According to Brook’s [1], the essence of software is a
construct of interlocking abstract concepts. Complexity,
conformity, changeability and invisibility are inherent
properties of the essence of software. Given the radical
differences in software development, in comparison to
other engineering disciplines, complexity and
changeability assumes greater importance. Thus the
process of creating software and its very nature makes it

prone to complexity. Two main sources of such
complexity are functional and structural changes as per
evolution of the system.

TRIZ (pronounced TREEZ) is the Russian acronym for
the Theory of Inventive Problem Solving. It is a large
collection of empirical methods discovered and invented
through comprehensive studies of millions of Patents
and other inventions for problem formulation and
possible solution directions [2]. One of the very strong
pillars of TRIZ is the quest for Ideality. TRIZ forces
problem solvers to define the ideal system – which is
defined as function achieved without resources and
harm. It is extremely useful when we know the function
that the system being designed need to perform. This is
more or less easy for a system whose functionality once
defined will not change – typically a hardware system,
while it is being developed.

A software system by contrast is developed more in an
evolutionary way - no one knows the final fine-grained
functionality of the system upfront. We start with
something and the system typically ends in something
else. In such a scenario, what is the ideal system - do we
need to look at the structure of the system rather than
the function alone? The structure that should cater for
least complex software system can be an ideal system?

In the current practice, there exists many different
metrics for software complexity. Researchers have tried
to measure the software complexity from the code
complexity perspective as well as coupling and
cohesion point of view, or even the disorder in the code
defined as software entropy [3]. There is reported work
studying relationship between software complexity and
software reliability in literature [5, 7]. The relationship
between software complexity as an interacting process
of coupling and cohesion has been studied explicitly in
[4]. The System Complexity Estimator (SCE) and
System Change Impact Model (SCIM) as described in
[16] quantify the structural complexity of the software
system.

We propose the ideality of system structure to be an
important constituent while designing the system
besides the achievement of function. In a way this
reflect the wisdom of ancients when they proclaimed it
is not only the end but the means as well that matter.
We believe that means in software system design are
really the structure of the system that should be ideal
besides the function achievement. We further propose in
this regard, ideality should be congruent with simplicity
or least complex software system. This paper describes
our experiments with this line of thinking in specific
software development scenario – especially a software
product for identity security developed by Hexaware
Innovation Labs (http://www.hexaware.com/akiva).

In Section 2 various software complexity measures
described in literature are reviewed. In Section 3 the
System Complexity Estimator (SCE) as described in
[16] is explained as it forms the basis of software
system ideality. Section 4 provides a brief discussion of
TRIZ and ideality as simplicity or least complex.
Section 5 describes a real life case study of development
of AKIVA – an identity security software product.
Section 6 describes the evolution of a more robust
design for AKIVA towards ideality as defined by TRIZ
and SCE framework. Conclusions and further areas of
exploration are provided in Section 7.

2. Software Complexity Measures

In a software system, the complexity could emanate
from unstructured nature of the software, the gap
between actual requirements and requirement
specifications, gap between requirements specification
and design, and finally gap between design and actual
implementation, i.e., source or executable code.
Functional complexity measurement has been discussed
in [6].

The structure of the software system is composed of
multiple elements joined together to provide a system
level functionality. The elements can be functions,
independent modules, procedures, classes or objects.
Their interaction is based on the content that they
transfer to each other while the software system is
executed. This content may be simple data, data
structure, control information, functions or programs.
The standard design guideline is that such coupling
should be minimized. Further, each element of the
software system should be cohesive to the extent
possible. The complexity emanates from a lack of
cohesion in each module and the strength of coupling
between various modules [9, 10].

Modularity is central to the design and development of
software system. Modular systems incorporate
collections of abstractions in which each functional
abstraction, each data abstraction, and each control
abstraction handles a local aspect of the problem being
solved [9, 10]. The coupling-cohesion criteria mean that
the system is structured to maximize the cohesion of
elements in each module and to minimize coupling
between modules.

Coupling refers to the degree of interdependence among
the components of a software system. Good software
system should obey the principle of Low coupling. The
cohesion of a module is defined as a quality attribute
that seeks to measure the singleness of purpose of a
module. Cohesion seeks to maximize the connections
within a module. Composite Module Cohesion has been
quantitatively defined in [11].

A measure of complexity called Software Entropy has
been defined in [3]. This measure takes into account the
disorder in the code. The disorder in the system depends
upon the lack of cohesion in the modules, level of
coupling between modules and complexity of the
modules. Software Engineering Institute (SEI) [8] offers
Maintainability Index (MI) which states [12] that a
program's maintainability is calculated using a
combination of widely-used and commonly-available
measures to form a Maintainability Index (MI). Taking
a cue from Social network analysis, [16] defines the
system complexity estimator as a measure of
complexity of the system. This is an integrated metric
which combines coupling and cohesion of various
components of a system.

3. System Complexity Estimator

Software system complexity is defined as a measure of
non-cohesion of its constituent modules, and the
interdependencies of modules [16]. This is closer to the
design guideline of minimum coupling and maximum
cohesion [9, 10]. The System Complexity Estimator
defined in [16] computes overall complexity of the
system using the centrality measures typically used in
social networks analysis [13] to identify the relative
importance of different actors based on their
connectivity with the rest of the network.

The System Complexity Estimator (SCE) starts with the
definition of an ideal software system which is defined
as, “ A system with completely independent elements
(modules) where each module performs a single
function is the least complex architecture – this is the
ideal architecture for a system. In such an ideal
architecture/design the system complexity is

minimized.” Ideally a module should perform only 1
function.

Further the SCE identifies two levels of complexities –
one at the element/module level and other at the level of
interdependencies between the elements. The non-
cohesion is measured by cardinality of functions
performed by each module. The more functions a
particular module performs leads to less cohesiveness of
the module. Second level of complexity is the
interdependencies between system elements.

There are two kinds of dependencies that System
Complexity Estimator takes into consideration. How
much the module depends on the system for its
functioning and how much all the modules (the system)
depend on the module for their functioning. As an
example, the dependency matrix (D) given in Table 1,
describes a 4 module software system.

Table 1: System Dependency Matrix
 A1 A2 A3 A4
A1 1.0 0.5 0.0 0.0
A2 1.0 1.0 0.8 0.0
A3 0.0 0.5 1.0 0.0
A4 0.2 0.0 1.0 1.0

Once the dependency matrix (D) and number of
functions performed by each module are obtained, next
step is to construct System Complexity Matrix (X).
Each element of X, i.e., ijx is computed as

jijij Hdx ×= (2)

where ijd is the thi and thj column element of matrix

D; jH is the non-cohesion of module j which equals the

number of functions performed by j; ijx is the thi row

and thj column element of matrix X. The System
Complexity Matrix for the example above is as given in
Table 2

 Table 2: System Complexity Matrix
Non
Cohesion

3 2 1 6

 A1 A2 A3 A4
A1 3.0 1.0 0.0 0.0
A2 3.0 2.0 0.8 0.0
A3 0.0 1.0 1.0 0.0
A4 0.6 0.0 1.0 6.0

The overall system complexity (Ω) is the sum of all
elements of the system complexity matrix. In the above

example this comes out to be 19.4. To find out the
relative contribution of each module to the overall
complexity one need to take into account the
dependencies in more detail.

As mentioned there are two kinds of dependencies
mapping to compute the two corresponding indices.
These indices are called Module Dependency on the
System Index (MDSI) and System Dependency on the
Module Index (SDMI). The corresponding element of
the normalized eigen vector corresponding to principal
eigen value of the System Complexity Matrix gives the
MDSI for the respective module. Similar element of the
vector obtained for the transpose of the System
complexity matrix gives SDMI. The MDSI for the X
matrix is given in Table 3. Similar computations for the
transpose of the matrix will lead to SDMI. These values
are shown in Table 4.

As can be seen from Table 4, the average of MDSI and
SDMI gives the relative contribution of Module to
overall system complexity in percentage terms. If we
multiply these percentages (r) with the overall system
complexity (C), we get the module complexity. Hence,
modules A1, A2, A3, and A4 contribute 4.97, 5.66, 3.34
and 5.43 to the overall complexity, respectively.

Table 3: Normalized Eigen Vector corresponding to
Principal Eigen Value

 A1 A2 A3 A4 MDSI
A1 0.45 0.25 0.00 0.00 0.18
A2 0.45 0.50 0.29 0.00 0.31
A3 0.00 0.25 0.36 0.00 0.15
A4 0.09 0.00 0.36 1.00 0.36

Table 4: Relative contribution of modules to system
complexity
 MDSI SDMI Average

(r)
Module
Complexity
= r x Ω

A1 0.18 0.34 0.26 4.97
A2 0.31 0.27 0.29 5.66
A3 0.15 0.19 0.17 3.34
A4 0.36 0.20 0.28 5.43

A radar plot or Kiviat chart of the complexity
contribution of each module gives system complexity
map of the software design, which is useful to find out
the complexity imbalance in the software system. SCE-
SCIM framework has been used to describe an approach
for a Robust Inventive Software Design in [15] which
combines Analytic Hierarchy Process (AHP) [14], TRIZ
and DSM as an integrated framework.

We describe the application of SCE in Section 6 for
evolving a software design towards ideality. A review
of TRIZ and ideality is given in the next section to
explain the conceptual understanding of ideality related
to structure of the system besides the focus on the
system function.

4. Theory of Inventive Problem Solving – TRIZ

TRIZ (pronounced TREEZ) is the Russian acronym for
the Theory of Inventive Problem Solving. It is a large
collection of empirical methods discovered and invented
through comprehensive studies of millions of Patents
and other inventions for problem formulation and
possible solution directions. This proven algorithmic
approach to solving technical problems began in 1946
when the Russian engineer and scientist Genrich
Altshuller studied thousands of patents and noticed
certain patterns. From these patterns he discovered that
the evolution of a technical system is not a random
process, but is governed by certain objective laws.
These laws can be used to consciously develop a system
along its path of technical evolution - by determining
and implementing innovations [2].

TRIZ states that someone, somewhere, sometime has
solved the problem that you are facing or a very similar
one, it is now a much simpler task to search for the
solution rather than thinking about solution with your
limited exposure. By abstracting the inventiveness of
thousands of inventors, TRIZ brings to the problem
solver a plethora of robust techniques and methods that
has worked in the past substantially. Solve by exploring
in multiple directions but start from the end result – The
Ideal Final Result – focus on functionality not features.

TRIZ has variety of techniques for problem formulation
and problem solving. There are texts available that
describe TRIZ in detail. Reader can refer to large body
of knowledge at [17, 18]. Focus on Function – Main
Useful function that product needs to deliver to meet a
customer/user need. Value is nothing but Function
delivered to meet a user need. Ideal Final Result –
Value delivered at no cost or resource expenditure and
not harming the system in anyway, alternatively the
function is achieved on its own – self functioning
system.

Given the distinct nature of software systems and their
method of development, we propose, besides the
ideality of function as defined by TRIZ, structural
ideality should also be the objective in designing robust
software systems. In this regard, we propose System
Complexity Estimator (SCE) –framework for software
design.

In the next two sections we describe a specific case
study for an identity security software product. We
show how the ideality thinking from TRIZ led to focus
on structural ideality where in we used SCE to reach the
software system towards an ideal product.

5. Case Study – AKIVA – An Identity Security
Software product design

AKIVA a GUI driven tool is designed to 'de-identify'
personal and sensitive data required for use in a variety
of situations such as software development,
implementation and testing and outsourcing. It allows
creation of disguised copies of production databases and
provides realistic and fully functional databases without
compromising on confidentiality. It offers additional
level of data protection beyond firewalls and encryption.
AKIVA is a data scrambling tool to mask Enterprise
Database Applications. It maintains Data Consistency,
Data Security and Data Integrity while masking data
across the enterprise application.

Akiva features

• Data consistency – Akiva masks data
consistently across the PeopleSoft enterprise,
so that the same entity relationship is
maintained post masking

• Ability to choose any data element – Enables
data security officers to choose any of the
sensitive data elements across PeopleSoft
enterprise online using Akiva. This includes
vanilla and customized components.

• Data security – Data masking algorithm is not
static in nature, Akiva accepts unique 16 digit
numeric token key as input for masking

• Wide coverage – Akiva supports all modules
and pillars for PeopleSoft. Data security
officers can use the same tool to mask sensitive
information in their HRMS, NA Payroll,
Benefits, SCM, financial applications.

• Data integrity – Akiva masks PeopleSoft
enterprise data without impacting any of the
business process validations

• Secured – Akiva does not store any of the
masking information including the token key in
the system.

Algorithms implemented

• Scramble – Arithmetically generate new
values in required field format based on the
input token key

• Combo Shuffle – Join a group fields and
shuffle together based on a lookup table (e.g.)

Address 1, Address 2, Address 3, City, State,
Zip code.

• Selective Shuffle – Replace sensitive values
with meaningful, readable data based on a
lookup table. Shuffle is based on a selection
criteria (e.g.) Shuffle female names and male
names separately

• Replacement – Simply replaces a field value
with a static value provided.

• Blank out – Simply replaces a field value with
a static value provided.

• Lookup - Replace employee names and
addresses choosing from an inbuilt repository

• SSN Generator - Generate valid US Social
Security Numbers for all employees

• Luhn Generator - Generate numbers
satisfying Luhn checksum condition

• Pattern Generator - Generates a set of
numbers based on user-defined pattern

Environment
The web application has been developed using J2EE
framework and the masking algorithms have been
implemented using PL/SQL Procedures in ORACLE
database.

6. Case Study – AKIVA – Evolution towards Ideality

The existing AKIVA design has an estimated code size
of 8000 lines of code. It is composed of 18 modules
performing a total of 54 unique functions. The average
number of functions per module comes out to be 3.0.
When we study the System Complexity using the SCE,
the system complexity came out to be 88.7. The system
complexity map is shown below.

System Complexity Map for Existing AKIVA design

Existing Design

0.00

4.00

8.00

12.00

16.00
Scramble

Name Shuffle

Address Shuffle

Generic Shuffle

Blank Out

Replacement

SSN Generator

Luhn Generator

Sequence Number Generator
Random Number Generator

Pattern Generator

Preload Script

Masking

Scheduler

Installer

Profile Management

Preview Masking

Create New Rule

One can see the complexity imbalance created by the
module Masking which contributes maximum to the
overall complexity. In the ideal system, the complexity
should be closer to number of functions being
performed which is 54.0.

Generating alternative designs based on SCE –
moving towards ideality

Looking at the complexity, the team brainstormed to
look at alternative designs for minimizing the system
complexity. Three alternative designs evolved as shown
below. Design option 1 had 22 modules while option 2
and option 3 had 39 and 42 modules respectively.

Design Option1

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00

Scramble
Name Shuff le

Address Shuff le

Generic Shuff le

Ethnicity Shuff le

Selective Name Shuff le

Look Up Names Shuff le

Look Up Address Shuffle

Data Encryption/Decryption

Blank Out

Replacement
SSN Generator

Luhn Generator

Sequence Number Generator

Random Number Generator

Pattern Generator

uthenticator (Authenticate,Pre-Load &
compile)

Scheduler

Preview

Profile Manager

DB Masker

Custom Rule Manager

Design Option 2

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00

Scramble
Name Shuff le

Address Shuffle

Generic Shuff le

Ethnicity Shuffle

Selective Name Shuff le

Look Up Names Shuffle

Look Up Address Shuffle

Data Encryption/Decryption

Blank Out

Replacement
SSN Generator

Luhn Generator

Sequence Number Generator

Random Number Generator

Pattern Generator

Common_Functions

Load Staging Table

Update Transaction Table

Log f ile generation

Authenticate Db Credentials

Execute Preload Script

Design Option 3

0.00

2.00

4.00

6.00

8.00

10.00

12.00
Scramble

Name ShuffleAddress Shuff le
Generic Shuffle

Ethnicity Shuff le
Selective Name Shuff le

Look Up Names Shuffle
Look Up Address Shuffle

Data Encryption/Decryption

Blank Out

Replacement

SSN Generator

Luhn Generator

Sequence Number Generator

Random Number Generator
Pattern Generator

Common_Functions
Load Staging Table

Update Transaction Table
Log f ile generationAuthenticate Db Credentials

Execute Preload Script
Get Restart / Scheduled Job StatusSchedule Masking

Stop Scheduled Masking
Re-Schedule Masking

Preview Prof ile
Restart Masking

New Prof ile

Get All Mask Field List

Mask Fields / Master Tables / Limit
Tables

Generate Mask Information

Save Prof ile

Preview Masking

Start Masking

Load Prof ile
Monitor Mask Status

Create New Rule
Modify Rule

As we increased the number of modules, the functions
per module reduced – it came out to be 3, 1.3 and 1.2
respectively for Design option 1, Design option 2 and
Design option 3, respectively. Compared to existing
design this was definitely an improvement. However,
overall complexity of the product in all three Design
options actually increased to 102, 174 and 155
respectively. This was definitely way beyond the

ideality. It increased because of increase coupling
between various modules.

A design that evolved nearer to ideality as defined by
its complexity

The team brainstormed further to look at ways and
means of reducing the coupling. The team hit upon the
idea of a router, which was suggested earlier during the
discussions but somehow was not pursued. The system
complexity map of final evolved design is shown below.

Final Evolved Design

0.00

2.00

4.00

6.00

8.00
Blank Out

Replacement Scramble
Generic Shuff le

SSN Generator
Luhn Generator

Sequence Number Generator

Random Number Generator

Pattern Generator

Single Field Router

Ethnicity Shuff le

Data Encryption/Decryption

Name Shuffle

Address Shuffle
Selective Name Shuffle

Look Up Names Shuffle
Look Up Address ShuffleAuthenticate Db Credentials

Execute Preload Script
Get Restart / Scheduled Job StatusSchedule Masking
Stop Scheduled Masking

Re-Schedule Masking
Preview Profile

Restart Masking

New Profile

Get All Mask Field List

Mask Fields / Master Tables / Limit
Tables

Generate Mask Information

Save Profile

Preview Masking

Start Masking
Load Profile

Monitor Mask Status
Create New RuleModify Rule

In the final evolved design, which is the existing design,
there are 36 modules performing 45 functions, giving
1.3 functions per module on an average. The overall
complexity is reduced to 81 from 89 in the original
design. This is a much cleaner design and easier to
maintain. The most useful result however is reduction in
lines of code from 7964 to 3866. This is more than 50%
reduction in code size. This helps in creating only the
needed coding rather than increasing the code size un-
necessarily. The table below gives the lines of code in
the modules of original design and final evolved design.

Algorithm Lines of code
 Before After
Blank Out 562 109
Replacement 575 122
Generic Shuffle 1435 211
SSN Generator 1812 542
Scrambling 2453 974
LUHN 1127 168
Log 0 150
Single field Router 0 1590
Total 7964 3866
Difference in Code 4098

The table below summarizes the system complexity
analysis of existing, alternatives design options and final
evolved design. As one can see the final evolved design

is not only closer to design guideline of highly cohesive
modules but also coupled to the optimal need.

Complexity Size Design Evaluation

Design
of

functions
Size (# of
Modules)

Avg Functions/
Module Complexity

Existing
Design 54 18 3 88.7
Design

Option 1 66 22 3 102.3
Design

Option 2 51 39 1.3 174
Design

Option 3 51 42 1.2 154.6
Final

Evolved
Design 45 36 1.3 81.2

The chart below plots system complexity of all the
design. As one can see the evolved design of AKIVA
has least complexity. The bubble size of each design
option indicates the average cohesion as defined by
number of functions per module. Here also the final
evolved design comes out to be 1.3 functions per
module.

Move Towards Ideal Software Design

Design Option 1 Final Evolved
Design

Design Option 3

Design Option 2

Existing Design

0

50

100

150

200

250

Design Options

Sy
st

em
 C

om
pl

ex
ity

7. Conclusions and Further Work

The paper describes software product design case study.
The design is for a product for identity security. Using
the ideality concept objective from TRIZ thinking, we
propose that for software systems it makes more sense
to look at structual ideality rather than achievement of
function alone. We have used the system complexity
estimator for evaluating various design alternatives to
evolve to a final software system which is closer to
ideality. This approach not only produced a more robust
and maintainable software product, but reduced the code
size by more than 50%. This is a highly desirable result
as the demands on software development productivity
are becoming intense day by day. Further the SCE
framework can be used to minimize the complexity of
other non-software products as well.This is the future
area of research that we will be conducting.

References

1. Brooks F.P., The Mythical Man-Month - Essays on
Software Engineering, Addison Wesley, 1995.

2. Bhushan N., Set-Based Concurrent Engineering and TRIZ
– A Framework for Global Product Development,
Proceedings of TRIZCON 2007 – The Ninth Annual
Conference of Altshuller Institute for TRIZ Studies, 23-25
April 2007, Louisville, Kentucy, USA.

3. Bhushan N. and Kaushik V., Software Entropy –
Definition and Applications, Workshop series on
Empirical Software Engineering, (Ed.) Bunse C. and
Jedlitschka A., Fraunhofer IRB Verlag, 2003, ISBN
381676374X.

4. Darcy D.P. et al, The Structural Complexity of Software:
Testing the interaction of Coupling and Cohesion,
http://littlehurt.gsia.cmu.edu/gsiadoc/WP/2005-E23.pdf,
accessed on 15th March 2005.

5. Lew K.S., Dillon T.S. and Forward K.E., Software
Complexity and its impact of Software Reliability, IEEE
Transactions on Software Engineering, Vol 14., No. 11,
November 1998.

6. Tran-Cao D., Abran A. and Levesque G., Functional
Complexity Measurement, Proceedings of International
Workshop on Software Measurement, August 28-29, 2001.

7. Bhushan N., Balancing Reliability and Software
Complexity – Can TRIZ help? International Conference on
Quality, Reliability and Information Technology
(ICQRIT), December 2003.

8. http://www.sei.cmu.edu

9. Fairley, R., Software Engineering Concepts, McGraw Hill,
1985

10. Shooman, M.L., Software Engineering, McGraw Hill,
1983.

11. Patel S., Chu W., and Baxter R., A Measure of Composite
Module Cohesion, ACM conference, 1992.

12. http://www.sei.cmu.edu/str/descriptions/mitmpm.html
13. Bonacich, P.B., Power and Centrality: A Family of

Measures, American Journal of Sociology, 92, 1170-1182,
1987

14. Bhushan, N. and Rai, K., Strategic Decision Making –
Applying the Analytic Hierarchy Process, Springer UK,
2004.

15. Bhushan, N., Robust Inventive Software Design (RISD) –
A Framework Combining DSM, TRIZ and AHP, 7th
International Conference on Dependency Structure Matrix,
Seattle, US, October 2005,
http://www.dsmweb.org/workshops/DSM2005/dsm05conf
/presentations/day_3/01_Day3_Navneet_Bhushan.pdf
(accessed on July 4, 2006)

16. Bhushan N., System Complexity Estimator - Applications
in Software Architecture, Design and Project Planning, 3rd
International Conference on Quality, Reliability, Infocom
Technology, ICQRIT, 2-4 Dec 2006, New Delhi, India.

17. http://www.aitriz.org (The Altshuller Institute)
18. http://www.triz-journal.com
