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Abstract 
Ideality as defined by Theory of Inventive Problem 
Solving (TRIZ) starts with a clear articulation of 
function to be achieved by the system. Once it is 
described, ideality is defined as function achieved 
without cost and with no negative impact on the system. 
Typically this trigger leads to strong solutions whereby 
the system achieves the desired function on its own – 
may be through the use of existing resources. Defining 
ideality in such terms for software products is inherently 
difficult due to evolutionary nature of the software 
systems. It is rarely the case that software system 
remains to the confines of functions that it was initially 
designed for. Invariably a software system evolves 
through addition of multiple functions or capabilities 
throughout its life. In fact, the graceful degradation of 
performance specific to the existing function of an 
evolving software system is more of a norm rather than 
exception. Further, it is really the evolution of its 
structure that helps the software system to perform new 
functions through addition of more and may be different 
pieces of structure to the system. In such cases, we 
propose besides the ideality as defined by function, 
ideality of the structure should also be taken into 
account. We propose the use of System Complexity 
Estimator and System Change Impact Model (SCE-
SCIM) framework to take care of ideality of software 
systems. The paper describes the design process of a 
recent software product for identity securing developed 
at Hexaware Innovation Labs. The use of ideality from 
structural perspectives led to much cleaner design 
which is easier to maintain and evolve then the existing 
design. 
 
Introduction 
 
According to Brook’s [1], the essence of software is a 
construct of interlocking abstract concepts. Complexity, 
conformity, changeability and invisibility are inherent 
properties of the essence of software. Given the radical 
differences in software development, in comparison to 
other engineering disciplines, complexity and 
changeability assumes greater importance. Thus the 
process of creating software and its very nature makes it 

prone to complexity. Two main sources of such 
complexity are functional and structural changes as per 
evolution of the system. 
 
TRIZ (pronounced TREEZ) is the Russian acronym for 
the Theory of Inventive Problem Solving. It is a large 
collection of empirical methods discovered and invented 
through comprehensive studies of millions of Patents 
and other inventions for problem formulation and 
possible solution directions [2]. One of the very strong 
pillars of TRIZ is the quest for Ideality. TRIZ forces 
problem solvers to define the ideal system – which is 
defined as function achieved without resources and 
harm. It is extremely useful when we know the function 
that the system being designed need to perform. This is 
more or less easy for a system whose functionality once 
defined will not change – typically a hardware system, 
while it is being developed. 
 
A software system by contrast is developed more in an 
evolutionary way - no one knows the final fine-grained 
functionality of the system upfront. We start with 
something and the system typically ends in something 
else. In such a scenario, what is the ideal system - do we 
need to look at the structure of the system rather than 
the function alone? The structure that should cater for 
least complex software system can be an ideal system? 
 
In the current practice, there exists many different 
metrics for software complexity. Researchers have tried 
to measure the software complexity from the code 
complexity perspective as well as coupling and 
cohesion point of view, or even the disorder in the code 
defined as software entropy [3]. There is reported work 
studying relationship between software complexity and 
software reliability in literature [5, 7]. The relationship 
between software complexity as an interacting process 
of coupling and cohesion has been studied explicitly in 
[4]. The System Complexity Estimator (SCE) and 
System Change Impact Model (SCIM) as described in 
[16] quantify the structural complexity of the software 
system.  
 



We propose the ideality of system structure to be an 
important constituent while designing the system 
besides the achievement of function. In a way this 
reflect the wisdom of ancients when they proclaimed it 
is not only the end but the means as well that matter. 
We believe that means in software system design are 
really the structure of the system that should be ideal 
besides the function achievement. We further propose in 
this regard, ideality should be congruent with simplicity 
or least complex software system. This paper describes 
our experiments with this line of thinking in specific 
software development scenario – especially a software 
product for identity security developed by Hexaware 
Innovation Labs (http://www.hexaware.com/akiva). 
 
In Section 2 various software complexity measures 
described in literature are reviewed. In Section 3 the 
System Complexity Estimator (SCE) as described in 
[16] is explained as it forms the basis of software 
system ideality. Section 4 provides a brief discussion of 
TRIZ and ideality as simplicity or least complex. 
Section 5 describes a real life case study of development 
of AKIVA – an identity security software product. 
Section 6 describes the evolution of a more robust 
design for AKIVA towards ideality as defined by TRIZ 
and SCE framework. Conclusions and further areas of 
exploration are provided in Section 7. 
 
2. Software Complexity Measures 
 
In a software system, the complexity could emanate 
from unstructured nature of the software, the gap 
between actual requirements and requirement 
specifications, gap between requirements specification 
and design, and finally gap between design and actual 
implementation, i.e., source or executable code. 
Functional complexity measurement has been discussed 
in [6].  
 
The structure of the software system is composed of 
multiple elements joined together to provide a system 
level functionality. The elements can be functions, 
independent modules, procedures, classes or objects. 
Their interaction is based on the content that they 
transfer to each other while the software system is 
executed. This content may be simple data, data 
structure, control information, functions or programs. 
The standard design guideline is that such coupling 
should be minimized. Further, each element of the 
software system should be cohesive to the extent 
possible. The complexity emanates from a lack of 
cohesion in each module and the strength of coupling 
between various modules [9, 10].  
 

Modularity is central to the design and development of 
software system. Modular systems incorporate 
collections of abstractions in which each functional 
abstraction, each data abstraction, and each control 
abstraction handles a local aspect of the problem being 
solved [9, 10]. The coupling-cohesion criteria mean that 
the system is structured to maximize the cohesion of 
elements in each module and to minimize coupling 
between modules.  
 
Coupling refers to the degree of interdependence among 
the components of a software system. Good software 
system should obey the principle of Low coupling. The 
cohesion of a module is defined as a quality attribute 
that seeks to measure the singleness of purpose of a 
module. Cohesion seeks to maximize the connections 
within a module. Composite Module Cohesion has been 
quantitatively defined in [11].  
 
A measure of complexity called Software Entropy has 
been defined in [3]. This measure takes into account the 
disorder in the code. The disorder in the system depends 
upon the lack of cohesion in the modules, level of 
coupling between modules and complexity of the 
modules. Software Engineering Institute (SEI) [8] offers 
Maintainability Index (MI) which states [12] that a 
program's maintainability is calculated using a 
combination of widely-used and commonly-available 
measures to form a Maintainability Index (MI). Taking 
a cue from Social network analysis, [16] defines the 
system complexity estimator as a measure of 
complexity of the system. This is an integrated metric 
which combines coupling and cohesion of various 
components of a system.  
 
3. System Complexity Estimator 
 
Software system complexity is defined as a measure of 
non-cohesion of its constituent modules, and the 
interdependencies of modules [16]. This is closer to the 
design guideline of minimum coupling and maximum 
cohesion [9, 10]. The System Complexity Estimator 
defined in [16] computes overall complexity of the 
system using the centrality measures typically used in 
social networks analysis [13] to identify the relative 
importance of different actors based on their 
connectivity with the rest of the network.  
 
The System Complexity Estimator (SCE) starts with the 
definition of an ideal software system which is defined 
as, “ A system with completely independent elements 
(modules) where each module performs a single 
function is the least complex architecture – this is the 
ideal architecture for a system. In such an ideal 
architecture/design the system complexity is 



minimized.” Ideally a module should perform only 1 
function.  
 
Further the SCE identifies two levels of complexities – 
one at the element/module level and other at the level of 
interdependencies between the elements. The non-
cohesion is measured by cardinality of functions 
performed by each module. The more functions a 
particular module performs leads to less cohesiveness of 
the module. Second level of complexity is the 
interdependencies between system elements. 
 
There are two kinds of dependencies that System 
Complexity Estimator takes into consideration. How 
much the module depends on the system for its 
functioning and how much all the modules (the system) 
depend on the module for their functioning. As an 
example, the dependency matrix (D) given in Table 1, 
describes a 4 module software system. 
 

Table 1: System Dependency Matrix 
 A1 A2 A3 A4 
A1 1.0 0.5 0.0 0.0 
A2 1.0 1.0 0.8 0.0 
A3 0.0 0.5 1.0 0.0 
A4 0.2 0.0 1.0 1.0 

 
Once the dependency matrix (D) and number of 
functions performed by each module are obtained, next 
step is to construct System Complexity Matrix (X). 
Each element of X, i.e., ijx  is computed as 

jijij Hdx ×=    (2) 

where ijd   is the thi  and thj  column element of matrix 

D; jH is the non-cohesion of module j which equals the 

number of functions performed by j; ijx   is the thi  row 

and thj  column element of matrix X. The System 
Complexity Matrix for the example above is as given in 
Table 2 
  
           Table 2: System Complexity Matrix 
Non 
Cohesion 

3 2 1 6 

 A1 A2 A3 A4 
A1 3.0 1.0 0.0 0.0 
A2 3.0 2.0 0.8 0.0 
A3 0.0 1.0 1.0 0.0 
A4 0.6 0.0 1.0 6.0 
 
The overall system complexity (Ω ) is the sum of all 
elements of the system complexity matrix. In the above 

example this comes out to be 19.4. To find out the 
relative contribution of each module to the overall 
complexity one need to take into account the 
dependencies in more detail. 
 
As mentioned there are two kinds of dependencies 
mapping to compute the two corresponding indices. 
These indices are called Module Dependency on the 
System Index (MDSI) and System Dependency on the 
Module Index (SDMI). The corresponding element of 
the normalized eigen vector corresponding to principal 
eigen value of the System Complexity Matrix gives the 
MDSI for the respective module. Similar element of the 
vector obtained for the transpose of the System 
complexity matrix gives SDMI. The MDSI for the X 
matrix is given in Table 3. Similar computations for the 
transpose of the matrix will lead to SDMI. These values 
are shown in Table 4. 
 
As can be seen from Table 4, the average of MDSI and 
SDMI gives the relative contribution of Module to 
overall system complexity in percentage terms. If we 
multiply these percentages (r) with the overall system 
complexity (C), we get the module complexity. Hence, 
modules A1, A2, A3, and A4 contribute 4.97, 5.66, 3.34 
and 5.43 to the overall complexity, respectively. 
 
Table 3: Normalized Eigen Vector corresponding to 
Principal Eigen Value 

 A1 A2 A3 A4 MDSI 
A1 0.45 0.25 0.00 0.00 0.18 
A2 0.45 0.50 0.29 0.00 0.31 
A3 0.00 0.25 0.36 0.00 0.15 
A4 0.09 0.00 0.36 1.00 0.36 

 
Table 4: Relative contribution of modules to system 
complexity 
 MDSI SDMI Average 

(r)  
Module 
Complexity 
= r x Ω  

A1 0.18 0.34 0.26 4.97 
A2 0.31 0.27 0.29 5.66 
A3 0.15 0.19 0.17 3.34 
A4 0.36 0.20 0.28 5.43 
 
A radar plot or Kiviat chart of the complexity 
contribution of each module gives system complexity 
map of the software design, which is useful to find out 
the complexity imbalance in the software system. SCE-
SCIM framework has been used to describe an approach 
for a Robust Inventive Software Design in [15] which 
combines Analytic Hierarchy Process (AHP) [14], TRIZ 
and DSM as an integrated framework. 



We describe the application of SCE in Section 6 for 
evolving a software design towards ideality. A review 
of TRIZ and ideality is given in the next section to 
explain the conceptual understanding of ideality related 
to structure of the system besides the focus on the 
system function.  
 
4. Theory of Inventive Problem Solving – TRIZ 
 
TRIZ (pronounced TREEZ) is the Russian acronym for 
the Theory of Inventive Problem Solving. It is a large 
collection of empirical methods discovered and invented 
through comprehensive studies of millions of Patents 
and other inventions for problem formulation and 
possible solution directions. This proven algorithmic 
approach to solving technical problems began in 1946 
when the Russian engineer and scientist Genrich 
Altshuller studied thousands of patents and noticed 
certain patterns. From these patterns he discovered that 
the evolution of a technical system is not a random 
process, but is governed by certain objective laws. 
These laws can be used to consciously develop a system 
along its path of technical evolution - by determining 
and implementing innovations [2].  
 
TRIZ states that someone, somewhere, sometime has 
solved the problem that you are facing or a very similar 
one, it is now a much simpler task to search for the 
solution rather than thinking about solution with your 
limited exposure. By abstracting the inventiveness of 
thousands of inventors, TRIZ brings to the problem 
solver a plethora of robust techniques and methods that 
has worked in the past substantially. Solve by exploring 
in multiple directions but start from the end result – The 
Ideal Final Result – focus on functionality not features. 
 
TRIZ has variety of techniques for problem formulation 
and problem solving. There are texts available that 
describe TRIZ in detail. Reader can refer to large body 
of knowledge at [17, 18]. Focus on Function – Main 
Useful function that product needs to deliver to meet a 
customer/user need. Value is nothing but Function 
delivered to meet a user need. Ideal Final Result – 
Value delivered at no cost or resource expenditure and 
not harming the system in anyway, alternatively the 
function is achieved on its own – self functioning 
system. 
 
Given the distinct nature of software systems and their 
method of development, we propose, besides the 
ideality of function as defined by TRIZ, structural 
ideality should also be the objective in designing robust 
software systems. In this regard, we propose System 
Complexity Estimator (SCE) –framework for software 
design. 
 

In the next two sections we describe a specific case 
study for an identity security software product. We 
show how the ideality thinking from TRIZ led to focus 
on structural ideality where in we used SCE to reach the 
software system towards an ideal product.  
 
5. Case Study – AKIVA – An Identity Security 
Software product design 
 
AKIVA a GUI driven tool is designed to 'de-identify' 
personal and sensitive data required for use in a variety 
of situations such as software development, 
implementation and testing and outsourcing. It allows 
creation of disguised copies of production databases and 
provides realistic and fully functional databases without 
compromising on confidentiality. It offers additional 
level of data protection beyond firewalls and encryption. 
AKIVA is a data scrambling tool to mask Enterprise 
Database Applications. It maintains Data Consistency, 
Data Security and Data Integrity while masking data 
across the enterprise application. 
 
Akiva features 
 

• Data consistency – Akiva masks data 
consistently across the PeopleSoft enterprise, 
so that the same entity relationship is 
maintained post masking 

• Ability to choose any data element – Enables 
data security officers to choose any of the 
sensitive data elements across PeopleSoft 
enterprise online using Akiva. This includes 
vanilla and customized components. 

• Data security – Data masking algorithm is not 
static in nature, Akiva accepts unique 16 digit 
numeric token key as input for masking 

• Wide coverage – Akiva supports all modules 
and pillars for PeopleSoft. Data security 
officers can use the same tool to mask sensitive 
information in their HRMS, NA Payroll, 
Benefits, SCM, financial applications. 

• Data integrity – Akiva masks PeopleSoft 
enterprise data without impacting any of the 
business process validations 

• Secured – Akiva does not store any of the 
masking information including the token key in 
the system. 

 
Algorithms implemented 
 

• Scramble – Arithmetically generate new 
values in required field format based on the 
input token key 

• Combo Shuffle – Join a group fields and 
shuffle together based on a lookup table (e.g.) 



Address 1, Address 2, Address 3, City, State, 
Zip code. 

• Selective Shuffle – Replace sensitive values 
with meaningful, readable data based on a 
lookup table. Shuffle is based on a selection 
criteria (e.g.) Shuffle female names and male 
names separately 

• Replacement – Simply replaces a field value 
with a static value provided. 

• Blank out – Simply replaces a field value with 
a static value provided. 

• Lookup -  Replace employee names and 
addresses choosing from an inbuilt repository 

• SSN Generator -  Generate valid US Social 
Security Numbers for all employees  

• Luhn Generator -  Generate numbers 
satisfying Luhn checksum condition 

• Pattern Generator - Generates a set of 
numbers based on user-defined pattern  

 
Environment 
The web application has been developed using J2EE 
framework and the masking algorithms have been 
implemented using PL/SQL Procedures in ORACLE 
database. 
 
6. Case Study – AKIVA – Evolution towards Ideality  
 
The existing AKIVA design has an estimated code size 
of 8000 lines of code. It is composed of 18 modules 
performing a total of 54 unique functions. The average 
number of functions per module comes out to be 3.0. 
When we study the System Complexity using the SCE, 
the system complexity came out to be 88.7. The system 
complexity map is shown below. 
 
System Complexity Map for Existing AKIVA design  
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One can see the complexity imbalance created by the 
module Masking which contributes maximum to the 
overall complexity. In the ideal system, the complexity 
should be closer to number of functions being 
performed which is 54.0. 

 
Generating alternative designs based on SCE – 
moving towards ideality 
 
Looking at the complexity, the team brainstormed to 
look at alternative designs for minimizing the system 
complexity. Three alternative designs evolved as shown 
below. Design option 1 had 22 modules while option 2 
and option 3 had 39 and 42 modules respectively.  
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Design Option 2
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Design Option 3
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As we increased the number of modules, the functions 
per module reduced – it came out to be 3, 1.3 and 1.2 
respectively for Design option 1, Design option 2 and 
Design option 3, respectively. Compared to existing 
design this was definitely an improvement. However, 
overall complexity of the product in all three Design 
options actually increased to 102, 174 and 155 
respectively. This was definitely way beyond the 



ideality. It increased because of increase coupling 
between various modules. 
 
A design that evolved nearer to ideality as defined by 
its complexity 
 
The team brainstormed further to look at ways and 
means of reducing the coupling. The team hit upon the 
idea of a router, which was suggested earlier during the 
discussions but somehow was not pursued. The system 
complexity map of final evolved design is shown below. 
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In the final evolved design, which is the existing design, 
there are 36 modules performing 45 functions, giving 
1.3 functions per module on an average. The overall 
complexity is reduced to 81 from 89 in the original 
design. This is a much cleaner design and easier to 
maintain. The most useful result however is reduction in 
lines of code from 7964 to 3866. This is more than 50% 
reduction in code size. This helps in creating only the 
needed coding rather than increasing the code size un-
necessarily. The table below gives the lines of code in 
the modules of original design and final evolved design. 
 

Algorithm Lines of code 
  Before After 
Blank Out 562 109
Replacement 575 122
Generic Shuffle 1435 211
SSN Generator 1812 542
Scrambling 2453 974
LUHN 1127 168
Log 0 150
Single field Router 0 1590
Total 7964 3866
Difference in Code   4098
 
The table below summarizes the system complexity 
analysis of existing, alternatives design options and final 
evolved design. As one can see the final evolved design 

is not only closer to design guideline of highly cohesive 
modules but also coupled to the optimal need. 
 

Complexity Size Design Evaluation

Design
# of 

functions
Size (# of 
Modules)

Avg Functions/ 
Module Complexity

Existing 
Design 54 18 3 88.7
Design 

Option 1 66 22 3 102.3
Design 

Option 2 51 39 1.3 174
Design 

Option 3 51 42 1.2 154.6
Final 

Evolved 
Design 45 36 1.3 81.2  

 
 
The chart below plots system complexity of all the 
design. As one can see the evolved design of AKIVA 
has least complexity. The bubble size of each design 
option indicates the average cohesion as defined by 
number of functions per module. Here also the final 
evolved design comes out to be 1.3 functions per 
module. 
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7. Conclusions and Further Work 
 
The paper describes software product design case study. 
The design is for a product for identity security. Using 
the ideality concept objective from TRIZ thinking, we 
propose that for software systems it makes more sense 
to look at structual ideality rather than achievement of 
function alone. We have used the system complexity 
estimator for evaluating various design alternatives to 
evolve to a final software system which is closer to 
ideality. This approach not only produced a more robust 
and maintainable software product, but reduced the code 
size by more than 50%. This is a highly desirable result 
as the demands on software development productivity 
are becoming intense day by day. Further the SCE 
framework can be used to minimize the complexity of 
other non-software products as well.This is the future 
area of research that we will be conducting. 
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