
TRIZ And Software Innovation:
Historical Perspective And An Application Case Study

Darrell Mann
Director, Systematic Innovation Ltd, UK

Phone: +44 (1275) 337500
E-mail: darrell.mann@systematic-innovation.com

 ‘If it can be specified, it can be programmed’.

Abstract

The paper focuses on the relevance and application of TRIZ ideas and strategies to the
design of software systems. The paper is divided into two main sections. In the first
section the focus is on a historical review of innovations in the software domain. In this
section we examine the contributions of innovators from Charles Babbage to Alan
Turing, Tim Berners-Lee to Martin Fowler in the context of the TRIZ trends of evolution
and the discontinuous jumps their innovations represented. We then describe a number of
key evolution software trends consistent with these and other software innovations and,
using the currently untapped evolution potential, make predictions as to where the
software science is likely to evolve in the future. In the second part of the paper we
consider a real case study application of the software evolution trends. The focus of the
case study is design of control systems for unmanned air vehicles (UAVs). UAVs
represent a considerable number of design challenges for control engineers, many of
which currently have no effective solution. The most serious of these problems in several
applications is the inability of operators to obtain act upon local environmental effects
data (cross-winds, foreign object ingestion, rain, etc) when the aircraft has unknowingly
deviated from its planned mission. By examining the contradiction present in this
situation and integrating some of the TRIZ predicted discontinuous evolution trends the
paper proposes a number of control architecture innovations that look set to deliver
significant operational capability enhancements in the UAV arena.

What Is Software Innovation?

It is appropriate to begin the paper with a discussion on what innovation actually means
in the software context. In its most general sense, ‘innovation’ is usually taken to mean a
new idea that has been successfully deployed onto the market; something that is
satisfying a genuine market need and is generating a sustainable profit. We can apply the
same definition in the software arena, but if we do, we quickly run into the problem that
the software is often only a relatively minor part of a much bigger story. Thus we can
ask, was Internet Explorer an innovation? Or the Internet? Or eXtreme Programming
(XP)? None of these stories is easy to untangle. Internet Explorer, for example, certainly
meets our definitions regarding market need and profit, but was the software idea itself

new? The Internet on the other hand never delivered a direct ‘profit’ (financial at least) to
Tim Berners-Lee’s, and so even though the software concept was novel, should it be
called an innovation? Then XP, which continues to be popular amongst software
developers, has little if any innovation in terms of software, but rather is all about novel
ways of organising software engineers.

We can begin the process of untangling these and other stories by doing two things. The
first is to re-define ‘innovation’ as a ‘discontinuous jump towards a more ideal system’.
The key word in this definition is ‘discontinuous’. It is there to give the clear message of
a distinct shift from one way of doing something to another. The second thing we need to
do is define the possible domains in and around the software world. Figure 1 is an
attempt to do this. The ‘world’ here has been divided into a collection of four
overlapping domains; software, technical, business and mathematics. They overlap
because a) any kind of segmentation like this is drawing boundaries that don’t exist in
real life, and b) because often an innovation straddles several domains. Like for example,
the computer mouse – a primarily software-domain innovation, but with elements of
physical hardware.

Figure 1: Different Innovation Types In And Around Software Domain

This picture should hopefully help us to see that XP, although it relates to software
innovation, is actually a business domain jump. Internet Explorer similarly, is an
innovation that is all about business – the jump here (and business success factor) being
about bundling your navigation tool with other software products. With these definitions
and boundaries in mind, and given the title of this paper, our concern from here on in is
innovation in the shaded ‘software’ region of the Figure, and more specifically,
discontinuous jumps that have occurred in the software domain. Our task in identifying
and mapping software innovations is helped considerably by the work of David Wheeler
(Reference 1). Wheeler has published excellent materials on the evolution of software
systems. Although he never uses the ‘discontinuity’ definition, we see that each of the
things he includes in his list meet our definition. Table 1 reproduces a modified and
slightly expanded version of the data found in Wheeler’s work.

The right-hand column of the Table describes the discontinuous jump made by each
innovation in terms of the discontinuous software evolution trends uncovered as a result
of our own extensive programme of research on software systems. We will discuss these
trends in more detail in the next section.

Technical
(Physical)
Domain

Business
Domain

Software
Domain

(Mathematical)
Science
Domain

Table 1: Macro-Level Software System Innovations

Innovation Source Year Breakthrough/Trend
Analytical Engine
(software)

Charles Babbage 1837 Design Process
Action Co-ordination

Boolean Algebra George Boole 1845 Design Process
Mono-Bi-Poly (V)

Turing Machines Alan Turing 1936-7 Design Process
Non-Linearities

Stored Programme John von Neumann 1945 Action Co-ordination
Mono-Bi-Poly (V)

Hypertext Vannevar Bush 1945 Nesting - Down
Subroutines Maurice Wilkes, Stanley

Gill, David Wheeler
1951 Nesting – Down

Mono-Bi-Poly (V)
Assemblers Alick E. Glennie 1952 Human Involvement
Compilers Grace Murray Hopper 1952 Human Involvement

Nesting - Up
Human-like notation
(FORTRAN)

John Backus 1954-7 Design Process

Stack Principle (“the
operation postponed last is
carried out first”)

Frierich L. Bauer and
Klaus Samelson

1955 Nesting – Down
Action Co-ordination

Time-Sharing John McCarthy 1957 Segmentation
Mono-Bi-Poly (S)

List-Processing (LISP) John McCarthy 1958-60 Non-Linearity
Design Process

Survivable Packet-Switching
Networks

Paul Baran 1960 Connections
Dynamization

Word-Processing (IBM) 1964 Human Involvement
Mouse-Based User Interface Douglas C Englebart 1964 Human Involvement
Semaphores E. W. Dijkstra 1965 Action Co-ordination

Design Robustness
Hierarchical Directories
(Multics)

Louis Pouzin 1965 Nesting – Down

Unification J.A. Robinson 1965 Action Co-ordination
Reducing Complexity

Structured Programming Bohm & Jacopini 1966 Segmentation
Nesting - Down

Spelling Checker Les Earnest 1966 Feedback & Control
Human Involvement

Object-Oriented
Programming

Ole-Johan Dahl &
Kristen Nygaard

1967 Nesting – Up
Connections

Separating Text Content
from Format

William Tunnicliffe 1967 Segmentation

Graphical User Interface
(GUI)

J.C.R. Licklider 1968 Boundary Breakdown
Human Involvement

Regular Expressions Ken Thompson 1968 Reducing Complexity
Boundary Breakdown

Standardized Generic
Markup Language (SGML)

C.F. Goldfarb, Ed
Mosher, & Ray Lorie

1969-70 Nesting – Down
Mono-Bi-Poly (V)

Relational Model and
Algebra (SQL)

E.F.Codd 1970 Connections
Dimensionality

Distributed Network Email Richard Watson 1971 Degrees Of Freedom

Modularity Criteria David Parnas 1972 Segmentation
Action Co-ordination

Screen-Oriented Word
Processing

Lexitron and Linolex 1972 Mono-Bi-Poly (V)
Action Co-ordination

Pipes M. D. McIlroy 1972 Connections
B-Tree Rudolf Bayer Edward

M. McCreight
1972 Nesting – Down

Segmentation
Portable Operating Systems
(OS6,Unix)

J.E. Stoy &
C. Strachy

1972-6 Nesting –Up
Boundary Breakdown

Internetworking using
Datagrams (TCP/IP)

(Cyclades Project)
France

1972 Boundary Breakdown
Segmentation

Font Generation Algorithms Peter Karow 1973 Mono-Bi-Poly (S)
Segmentation

Monitor Hoare & Hansen 1974 Nesting –Up
Action Co-ordination

Communicating Sequent-ial
Processes (CSP)

C.A.R. Hoare 1975 Action Co-ordination
Rhythm Co-ordination

Diffie-Hellman Security
Algorithm

Diffie-Hellman 1977 Boundary Breakdown
Dynamization

RSA security algorithm Rivest, Shamir, and
Adleman

1978 Boundary Breakdown
Action Co-ordination

Spreadsheet Dan Bricklin & Bob
Frankston

1978 Design Point
Segmentation
Increasing Dimensions

Lamport Clocks Leslie Lamport 1978 Action Co-ordination
Nesting - Time

Distributed Newsgroups
(USENET)

Tom Truscott, Jim Ellis,
Steve Bellovin

1979 Segmentation
Asymmetry

Model View Controller (Xerox, PARC) 1980 Segmentation
Remote Procedure Call (Xerox, PARC) 1981 Action Co-ordination
Distributing Naming (DNS) - 1984 Segmentation

Nesting-Down
Mono-Bi-Poly (Inc-Diff)

Semantic Search David A. Plaisted ~1985 Segmentation
Lockless version mgmt. Dick Grune 1986 Dynamization
Distributed Hypertext via
Simple Mechanisms (www)

Tim Berners-Lee 1989 Mono-Bi-Poly (V)
Segmentation
Connections

Design Patterns Gamma, Helm, Johnson,
Vlissides

1991 Design Process
Knowledge

Secure Mobile Code (Java
and Safe-Tcl)

(Sun) 1992 Design Robustness
Mono-Bi-Poly (V)

Refactoring W.F.Opdyke 1993 Design Process
Nesting - Down

Web-Crawling Search
Engines

(World-Wide-Web
Worm)

1994 Connections
Asymmetry

Two things are perhaps the most striking about this list. Firstly is that, according to
Wheeler (and indeed our own research) over the history of software development there
have not been that many innovations. Actually, we ought to qualify that statement; there
have not been many innovations at this macro-scale.

Secondly, and leading on from this statement, is the observation that nesting and
recursion appear to have played a significant role in the evolution story. Again, more on
this subject later, but in the meantime, it is useful to note a pattern of evolutions to other
levels (higher or lower) followed by segmentations, Mono-Bi-Poly and Co-ordination
jumps. Thus, over time, the software domain has gradually extended. It has extended
periodically by nesting jumps either downwards into the sub-system and sub-sub-system,
etc levels or upwards into super-system or super-super-system, etc. Thus what we see
today is the emergence of highly hierarchical architectures. We can see this
schematically in Figure 2.

Figure 2: Recursion In Software Systems

This is important for us to keep in mind when looking for other examples of software
innovation. What Wheeler has done is brought together macro-level system innovations
that have had a clear and visible impact on the world. We could equally well, however,
observe similar discontinuities at the sub-system and lower levels. These will tend to be
less visible to the public at large, but they are nevertheless still valid ‘innovations’ by our
discontinuity definition, and thus – if they are shown to fit into an overall pattern – they
can teach us much about generating our own innovations systematically. The word
‘pattern’ here is a useful one to think about since the ‘Design Patterns’ are classed as one
of Wheeler’s macro-level innovations. The Design Patterns (Reference 2) are in essence
a mini-version of the TRIZ story. These patterns are all about uncovering ‘good’ design
practice and making it available in abstracted form to others working in the domain. So,
the emergence of Design Patterns in the macro sense can be viewed as a significant
discontinuous jump in the direction of the more ideal system. When an individual
software engineer uses one of the Patterns in the construction of a sub-sub-system
subroutine or DLL, it may not be so visible to the outside world, but it would
nevertheless count as an innovation because a discontinuous jump has occurred.

A good analogy to keep in mind here is the Toyota innovation strategy (Reference 3).
Toyota pride themselves on the large number of small-scale innovations they succeed in
introducing into their vehicles (the Reference quotes a million per year). They make little

Complexity

Duration of one S-curve

Typical evolution
trajectory

Time

Increasing number
of hierarchical levels

Typical cycle:

jump to new
hierarchical level

Segmentation, Mono-Bi-Poly jumps

Reducing complexity jumps

or no attempt to classify those innovations into ‘big’ or ‘small’ categories, but rather
employ the idea that the overall job is to move in the direction of the ‘ideal’ system. We
recommend a similar approach when thinking about software innovation; the hierarchical
level in the system where the discontinuous jump towards the ideal is not nearly so
important as actually making the jump.

In many ways, the Toyota ‘success by a million jumps’ strategy is even more important
in the software context than it is in automotive. Introducing a discontinuous change into a
physical object like a car or a windshield wiper takes far more effort (and money) than
changing a few lines of code. That fact coupled with the Linux/open-source/sharing
culture means that things can and ought to be able to evolve much faster in most parts of
the software world.

If this appears not to have happened (and a few minutes scanning through some of the
thousands of really poor software patents – see Reference 1 again for Wheeler’s
discussion on the subject) it is likely to be as much as anything because the emphasis in
the software world in since its inception has most frequently been to find enough people
to write enough competent code to satisfy the market need. The key word here is
‘competent’. The word ‘innovation’ has only really entered the software world
vocabulary because the growth curve is beginning to flatten and competition between
software writing companies is starting to hot up. So now let’s not just talk about
‘innovation’, but ‘systematic innovation’ in the software context:

Discontinuous Software Trends

Having discussed the idea of discontinuous jumps (at whatever hierarchical level) as the
basis of innovation and made the distinction between what is software and what is not,
over the course of the last seven years our team of researchers has been systematically
looking for and reverse engineering all forms of software discontinuities.

Guided in part by the original discontinuous trend patterns uncovered in technical and
business systems, we have so far uncovered 26 patterns relevant in the software context.
As shown in Figure 3, these 26 discontinuous evolution trends appear to fall into three
basic groups – physical, temporal and interfacial. In turn these three clusters map very
well onto the three important aspects of the Ideal Final Result – Free, Perfect and Now
(Reference 4).

Figure 3: Discontinuous Software Evolution Trends In Free/Perfect/Now Clusters

TE
M

PO
RA

LPHYSICAL

INTERFACE

Human Involvement/Autopoeisis
Reducing System Complexity
Nesting - Up

Segmentation
Nesting - Down
Mono-Bi-Poly (Similar)
Mono-Bi-Poly (Various)
Mono-Bi-Poly (Inc.Diff.)
Dynamization
Connections
Degrees of Freedom
Increasing Use of Dimensions
Asymmetry
Design Point
Design for Robustness
Non-Linearity
Feedback & Control
Use of Senses
Use of Colour
Design Process
Knowledge

Action Co-ordination
Rhythm Co-ordination
Boundary Breakdown
Nesting- Time
Damping

FREE

PERFECT

NOW

As presented in Reference 5, each of these trends can be distinguished by a number of
distinct stages. Crudely speaking, each of these stages can be thought of as an s-curve.
Thus the jump from one stage to another represents a discontinuous shift from one s-
curve to another. In this way, the software innovations mapped in Table 1 each represent
a jump along at least one of the 26 trends. Not all of the 26 trends shown in Figure 3 are
present in Table 1 since the Table is about macro-level jumps. The trends not featured in
Table 1 are thus generally found when we uncover innovations at sub-system and sub-
sub-system levels.

Many of these Trends will be familiar to TRIZ advocates, at least in terms of their titles.
That fact plus the limited space available here forces the discussion to examine just one
or two of the trends in more detail. In line with earlier discussions, the Nesting trends
appear to be important and therefore worthy of more detailed investigation. As first
discussed in Reference 6, there are two versions of this trend pattern; one where the
system evolves to a new level of detail at a lower level; and one where a system is nested
into a higher level system. Both are believed to be a significant driver for the recursive
evolution trajectory plotted in Figure 2.

Figure 4 illustrates the first of these two types; what we now call the ‘Nest –Down’ trend.

Figure 4: ‘Nest-Down’ Discontinuous Evolution Trend

In many ways this Trend is like the Mono-Bi-Poly trend. The significant difference – and
the reason we now feature it as a distinct entity in its own right – is that the key to
successful use of the trend is that users think specifically about adding more hierarchical
levels to the present system. A further similarity to Mono-Bi-Poly is that the trend is
open-ended in that it should always be asking us to think about whether there is an
advantage in adding a further level. A difference is that with Mono-Bi-Poly we will
eventually reach a point where we can see no further advantage in adding something else
to the system. With the Nesting trends, so far at least and consistent with Figure 2 (and
evolution in natural systems), we have not observed this ‘disappearing advantage’
phenomenon.

Figure 5: Temporal Interpretation Of ‘Nest-Down’ Discontinuous Evolution Trend

Non-hierarchical
structure

Dual-Level
Hierarchy

Three-Level
Hierarchy

Recursive

ENGINE TRANSMISSION TOOL

CONTROL

ENGINE TRANSMISSION TOOL

CONTROL

ENGINE TRANSMISSION TOOL

CONTROL

Single Action Action Within
Action Or Interval

Recursive
Action
Nesting

Multiple
Actions Within

Actions Or Intervals

The Nest-Down trend is applicable in terms of system architecture and also temporally.
Figure 5 illustrates the Nesting concept in terms of time – and the insertion of actions
within other actions. As with the architecture interpretation, as yet we have not observed
the ‘disappearing advantage’ characteristic yet.

Figure 6 illustrates the other main version of this trend, this time where nesting occurs in
the opposite direction and one system (or its function) migrates into a higher level of a
system hierarchy. This is what we have called the ‘Nest-Up’ trend.

Figure 6: ‘Nest-Up’ Discontinuous Evolution Trend

What this Trend is trying to illustrate are the stages in one upward nesting cycle. As with
‘Nest – Down’ we have not yet observed a limit to the number of times that this cycle
can repeat. It does, however, happen less frequently. The trend has been constructed in
the way that it has because the most common way of utilising the trends. This involves
an Evolution Potential assessment of a given system (Reference 7), where users are
looking to explore where that particular system is likely to evolve in the future. As far as
‘Nest – up’ is concerned the key question and direction the user is being asked to
examine is ‘is there a higher level system into which yours can be usefully integrated?’

With this thought in mind, we can use all of the uncovered trends to give us clues as to
the likely future evolution directions of software systems. Our usual way of doing this is
to use the Evolution Potential framework:

Untapped Potential

Given the earlier message that increasing hierarchy in software systems is an important
evolution driver, it will immediately feel crude and naïve to simply construct one radar
plot to describe the whole of the domain. Nevertheless, given the macro-level focus in
Table 1, such a plot may be instructive in obtaining an indication of future macro-level
evolution jumps. This should be okay, so long as we keep in mind the idea that if we
were doing a serious analysis of any given software system we would typically construct
plots for each of the levels and each of the elements within each element. Figure 7
illustrates this idea and the composite macro-level plot in more detail.

One of the difficulties in drawing this macro-level radar plot is in knowing whether
systems have evolved to the ends of the Nesting, Segmentation and Mono-Bi-Poly
trends. As stated earlier, the purpose of these Trends is to provoke a question. In the
Figure 7 plot, we have gauged that for each of these trends there remains untapped
potential. We believe this is the case because the Nesting trend doesn’t yet appear to be
subject to the law of diminishing benefits. Then, because the emergence of a new
hierarchical level opens up new Segmentation and Mono-Bi-Poly opportunities, even

Independent
structure

Connected Into
Higher-Level System

Completed
Integrated Into
Higher Level

System

though the benefits in additional Segmentation or Mono-Bi-Poly advance may have been
reached at one hierarchical level, they will not have been exploited at the new level.

Figure 7: Macro-Level Software Evolution Potential History

The plot suggests to us that despite the rapid evolution of software systems, there
continues to be large amounts of untapped potential. Nesting looks set to continue to be
important (in this regard we note that the evolution of software is following a similar
trajectory to that of the human brain – another hierarchically organised control system,
where, according to Reference 8 the brain currently features at least seven hierarchical
levels – suggesting that software (four or five levels depending on your perspective) still
has significant untapped potential. Perhaps because architecture is more readily
visualised than temporal issues, we speculate that there is considerably more opportunity
for nesting of actions.

Also indicated by the plot is the probably obvious (to Microsoft users at least!) untapped
potential in terms of system robustness evolution. Related but less obvious is the
considerable untapped potential in terms of software systems capable of handling non-
linearities. If this too sounds like an ‘obvious’ direction, the Dynamization and
Connections trends go some way towards indicating likely solutions to achieve a non-
linear capability in that both indicate shifts towards software architectures with
dynamically switchable connections and links.

Perhaps also falling into the ‘non-obvious’ category of predictions is an interpretation of
the Mono-Bi-Poly trend to the binary foundation of current systems. Although difficult to
predict when it will happen, it feels clear to us that doing things using zeros and ones will
ultimately hit a limit (either in terms of processing speed, or more likely, inability to
handle fuzzy and non-linear situations) that will in turn provoke an evolution to a non-
binary computing platform.

A Real Problem – UAV control

One of the big problems with this kind of high-level analyses of domains as broad as
‘software’ is that the outcomes and suggestions are at a similarly high level of
abstraction. It is one thing to suggest that software systems will continue their evolution

segmentation
nesting -down

M-B-P(S)
M-B-P(V)

M-B-P(inc.diff)
dynamization

connections

degrees of freedom

boundary breakdown

dimensionality

asymmetry
design point

design for robustness
non-linearities

feedback & controlsense interaction
colour

design process
knowledge

action coordination

rhythm coordination

segmentation - time

nesting-time
damping

human involvement
reducing complexity

nesting-up

M-B-P(S) - time

M-B-P(V) - time

macro-system

-1975

-2007

towards increasing numbers of hierarchical levels, but quite another to work out why that
might be useful in a particular situation. To at least begin to rectify this problem, this
final section of the paper examines a real software problem.

One of the big shifts taking place in the aerospace world at the present time is the
replacement of pilots with remote-controlled unmanned air vehicles (UAVs). This is
happening for a number of reasons, not least of which are the desire to keep humans
away from dangerous situations, and the fact that pilot physiology is an increasingly
dominant factor preventing improvements in aircraft performance. Figure 8 illustrates a
typical small UAV of the type used for reconnaissance purposes, usually over hostile
territory.

Figure 8: RQ-2 Reconnaissance UAV

Software systems play a crucial role in the control of UAVs. The current state of the art
in UAV control places much of the mission responsibility with the remote human
operator. The aircraft is fitted with a number of sensors, not least of which is the camera
system tasked with delivering the reconnaissance information back to the base station.
One of the key problems facing UAV control system designers is ensuring the ability of
the aircraft to conduct its intended mission in environments that have the potential to
change rapidly and unpredictably. Typical problem scenarios include such things as local
environmental shifts (air turbulence, sudden cross-winds, etc), foreign object damage to
key aircraft systems and faults occurring within the aircraft. Current control systems are
unable to do much to mitigate against any of these problems.

Figure 9: Mapping The UAV Autonomy Problem As A Contradiction

As is so often the case, the current system may be seen to have hit a contradiction. The
conflict in this case is centres around the desire for predictable behaviour when the local
environment is subject to considerable variation. Figure 9 illustrates the outcome of
mapping this conflict pair onto the Software Contradiction Matrix (Reference 8)

Given the high degree of common ground between solving contradictions and
discontinuous trend jumps, Figure 10 illustrates a system-level Evolution Potential plot
for the UAV control system.

Figure 10: Reconnaissance UAV Macro-Level Evolution Potential

Combining the output from the Contradiction analysis and the Evolution Potential
analysis shows a strong emphasis on Nesting as a strategy used by others in similar
conflict situations. We also see it as an area of un-exploited potential in the current
system. Neither the presence of Inventive Principle 7, Nested Doll from the contradiction
analysis nor the untapped potential in each of the Nesting trends, however, tells us
whether our UAV control problem is more likely to be solved by nesting either upwards
into the super-system or downwards into the sub-system. The domain specialists in this
situation ought to look in both directions.

In this particular case, the most useful solution direction emerged when the specialists
looked in the Nest-Up direction. The start of the conceptual solution came about by
thinking about how different UAVs flying the same or similar missions could somehow
be nested together, and information from one UAV could thus be nested into the
databanks of others. The basic concept here is that if each UAV knew what was
happening to other ones in the proximity it would be possible to share information and
allow each aircraft to ‘learn’ much faster about changes to the environment and itself.

Thus, for example, if all of the UAVs in a flight experienced a similar shift in
performance at around the same time, that would be indicative of a perturbation in the
environment. By combining mission trajectory information and GPS position
information, it further becomes possible to locate where the environment shifts in order
to potentially then allow other UAVs flying in the vicinity to avoid that location.

segmentation
nesting - down

m-b-p(s)
m-b-p(v)

m-b-p(inc diff)

dynamization

connections

degrees of freedom

boundary breakdown

dimensionality
asymmetry

design pointdesign for robustness
non-linearities

feedback & control
design process

action coordination

rhythm coordination

nesting - time

damping

human involvement
reducing complexity

nesting - up

If, on the other hand, just one aircraft experienced a shift in performance then that was
far more likely to be a fault on the aircraft. That fault could further be diagnosed by then
examining the rate of change of performance – blocked fuel filter, to take one extreme,
causing a far gentler performance shift than one caused by an impact from a bullet.

Picking up more solution cues from both the Contradiction and from the untapped
Evolution Potential, this basic Nest-Up solution concept was further expanded to include
elements of Dynamization (adjacent UAVs only needed to talk to each other sporadically
when a perturbation occurs), Preliminary Action (control systems could be ‘trained’ and
cross-calibrated first in non-threatening environments, and then later in controlled
‘seeded-fault’ situations. Without wishing to get too far into detail, the main features of
the eventually chosen solution can be seen in Figure 11, alongside the before-and-after
Evolution Potential radar plot.

Figure 11: Schematic Solution For UAV Autonomy Problem

Summary & Conclusions

Software innovation has been defined as discontinuous jump in the direction of a more
ideal system.

Based on the findings from the analysis of many thousands of software innovations
meeting this definition, there are – so far – 26 patterns of discontinuous evolution jumps.
These Trends have been designed to act as signposts pointing towards the more ideal
system.

A historical analysis of macro-scale software innovations reveals a pattern of
increasingly hierarchical systems, with increasing-decreasing complexity cycles
occurring within each hierarchical level. There is no evidence to suggest that this
evolution trajectory will not continue in the future.

Despite the rapid evolution of software systems, there remains considerable untapped
potential when compared to the trend patterns uncovered during the ongoing research.

base
station

continuous comms

pertubation-triggered
comms

pertubation-triggered
comms

A specific software problem has been described and conceptual solutions have been
developed using the software tools emerging from research into successful innovations in
other software areas.

References

1) Wheeler, D.A., ‘The Most Important Software Innovations’,
http://www.dwheeler.com/innovation/innovation.html, August 2001, revised January 2007.

2) Gamma, E., Helm, R., Johnson, R., Vissides, J., ‘Design Patterns : Elements Of Reusable
Object-Oriented Software’, Addison Wesley, 1995.

3) May, M., ‘The Elegant Solution: Toyota’s Formula For Mastering Innovation’, Simon &
Schuster, 2007.

4) Systematic Innovation E-Zine, ‘Space/Time/InterFace and Free/Perfect/Now’, Issue 50, May
2006.

5) Mann, D.L., ‘Systematic (Software) Innovation’, IFR Press, 2007.
6) Systematic Innovation E-Zine, ‘New Trends – ‘Nest-Up’ And ‘Nest-Down’’, Issue 51, June

2006.
7) Matrix+ Software, www.systematic-innovation.com.
8) Hawkins, J., Blakeslee, S., ‘On Intelligence’, Times Books, 2004.

About The Author
Darrell Mann actively researches in the development and exploitation of systematic innovation
methods for both technical, software and business/social systems. After a career in Rolls-Royce
leading R&D strategy programmes involving large, multi-disciplinary teams, he now consults for
Fortune 500 companies all over the world in every industry sector. He has overseen strategic
management implementation programmes in a number of companies and leads a team of
researchers who's task is to be continually finding and integrating new best practice strategies
into a coherent innovation culture framework. He is the author of over 600 journal papers, patents
and patent applications as well as several books on systematic innovation. One day the book
‘Systematic (Software) Innovation may actually get published.

