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Abstract. In the proof of the famous Proposition 1-47, Euclid used several 

well known TRIZ inventive principles as well as clearly establishing the 

Ideal Final Result and introducing an X-element. In this example, it is 

discussed what systems and their hierarchies, from an inventive point of 

view could be in mathematics, what is an interaction and what is a field (in 

TRIZ terms). The line of proof wiggling from a system level to a system level is shown

.

 

The Purpose of this paper is to find common grounds for mathematics and system 

science with the great discoveries made in TRIZ. These common grounds are required 

1). to introduce TRIZ systematic methods into other disciplines and 2). to be able to 

investigate such disciplines for the TRIZ purpose, i.e. making new inventions in the 

disciplines themselves and applying the deep mathematical knowledge into practical life 

of an inventor beyond what is usual today.  

Figure 1 

Situation. (Figure 1) Mathematical proof 

involves a process of "construction", otherwise, 

invention. Let us see what inventive principles 

Euclid used in his proof of the Proposition 47 

from Book 1. English translation reads the 

theorem statement like this: "In right-angled 

triangles the square on the side subtending the 

right angle is equal to the squares on the sides 

containing the right angle." It means, the area of 

the squares constructed on the catheti of the 

right-angled triangle is equal the area of the 

square constructed on the hypotenuse. On the 

first figure, the squares ABFG and AHKC are 

the catheti squares of the right-angled triangle ACB and BCED is a hypotenuse triangle. 

That is what is given as a problem situation. 

 



Figure 2 

Ideal Final Result (IFR), or, in other words, 

plan of the solution, is if BCED is divided, or 

consist of two figures BOLD and OCEL (not 

necessary squares) which respectively are equal 

to ABFG and AHKC, then it proves the theorem 

(Figure 2). Contradiction here is "catheti squares 

must match or be located over two figures which 

BCEL consists of, but they are located 

elsewhere". What is supposed to be devised is 

the mechanism of placing catheti square areas 

onto the parts of the hypotenuse square. Euclid 

proposes the "X-Element" which is the 

cornerstone of the solution right away, but I am 

going to postpone its introduction. 

Clarification. A good chunk (about 25%) of Euclid's proof is dedicated to proving that 

AG is on the same line as AC (and correspondingly AB and AH). I am omitting it here. 

This is the clarification of situation in order to find all parts, their interactions, and 

governing rules. Clarification can be done as an initial step in problem consideration as 

well as after the IFR and the general idea of the solution are selected. In practice, 

Clarification may take 10 to 100 times more time and effort than the actual solution 

process. While "troubleshooting" of industrial equipment, once a problem is found, it is 

practically solved. In medicine, it is called Diagnosis. 

System Interaction in Mathematics. Before I tell you about the initial step of the 

solution, let us speculate about the nature of Interaction in Mathematics. In other 

disciplines, interaction involves time. But there is no notion of time in Math. If we want 

to spread the system approach to Math, we have to find, or define, how Math systems 

interact. When systems interact, there is always something common amongst them. It 

could be a boundary or a "channel" which is a form of boundary. One can say that the 

boundary belongs to both interacting systems, or forms bi-systems with them. 

With this, through the point B, the square ABFG interacts with BCED, and through the 

point C, AHKC interacts with the same BCED. An interaction point should play a role 

since it belongs to both systems. We can attempt to build our proof mechanism around 

it. (In accordance with my book "Junctions", this could be called a Junction). 

Let us look on a slightly larger scale. On one hand we have a bi-system of catheti 

squares ABFG and AHKC which interact through point A. On another hand we have a 

hypotenuse bi-system consisting of BOLD and OCEL which interact through a line OL. 



We may suppose that in our future mechanism of matching, or translation, the point A 

should match the line OL. On an even larger scale, the catheti squares bi-system 

interacts with BCED through the triangle ACB. The triangle ACB is a boundary 

between the squares and should "pass interactions" occurring among them. 

Initial Step. What should be introduced to start construction, what is the best initial 

step? It is always a choice. The first step is usually faulty. But it allows investigation 

and makes the next steps more targeted. No doubt, Euclid had these dilemmas. Let us 

see what qualities possess the choice he finally proposed. What OL should be? 

Obviously, a seemingly simplest one, a straight line. But a straight line is not as simple 

as what we are accustomed to think. It carries with it, through its possible interactions 

with other objects, a wide range of useful properties abundantly described in the 

previous propositions of the Euclid book. A straight line is a rich element. In dialectical 

terms, it is both simple and complex. There are infinitely many straight lines possibly 

intersecting BCED and thus dividing it. Narrowing the search, we want to put it in 

relation to catheti squares, presumably both. There is one convenient point: the point A. 

An AL straight line will divide the BCED and the catheti bi-system. (Likewise, it 

divides the triangle ACB, but that is not used 

further). How should AL divide BCED? There 

are only three ways a line can divide a square: 1). 

through vertices dividing it into two equal 

triangles (this can not be used if the point A is 

chosen); 2). dividing the square under an angle; 

and 3). be parallel to the sides, dividing the 

square into parallelograms. If we choose 3), AL 

becomes parallel to BD and CE. Parallel lines, 

when crossed with other lines (and we have it), 

carry abundance of area-related properties and 

effects. Let us do it. This is the cornerstone of 

our construction. 

It is worth noting that the line AL, in this case, 

unifies as its parts the point A and the segment 

OL which as we mentioned earlier correspond to 

each other. 

The straight line AL is parallel to BD and CE and divides the line BC in the point O 

(Figure 3). Another interesting fact (but not used further): the construction has two pairs 

of lines intersecting at the right angles: BH and CG intersecting at A, and AL and BC 

intersecting at O. 

 

Figure 3 



 

Symmetry-Asymmetry. The initial construction is size-

wise asymmetrical, though structurally symmetrical. We 

may remove the right part, work only with the left side, 

and prove ABFG=BOLD which is sufficient (Figure 4). 

This is one more achievement obtained with the parallel 

AL. The whole BCED should stay since it, as the whole, 

defines the properties of its parts used further. 

Construction of the Proof. In the basic geometry, 

besides points, lines, and figures with areas, there are 

also angles. Their main property is that they can be 

added and subtracted and the larger is greater than its parts. Like line segments related 

to infinite lines and dividing them infinitely, angles are related to the opposite of the 

line: a circle. There are an infinite number of segments on a line with not-connected 

ends, and a finite number of angles in a circle (a line with connected ends, "endless" in 

totally different way than a straight line), precisely equal to four right angles. In relation 

to angles, it does not matter what the size of a circle is. A system made of angles is the 

next "part" introduced to the construction. 

Figure 5 

Interaction Through Angles. Looking at angles (Figure 

5), there are three of specific interest: FBA, an angle of a 

cathetus, CBD, an angle of the hypotenuse, and ABC, an 

angle of the triangle between the former two. The square 

BCED interacts with the square ABFG not only through 

the point B, but also through the angle ABC. The angle 

FBA as the part of ABFG forms a bi-system with ABC 

obtaining the system of angles FBC. Likewise, the angle 

CBD as the part of BCED forms a bi-system with ABC 

obtaining the system of angles ABD. These angles, FBC 

and ABD are new systems, one part of each belonging to the original objects, and 

another, namely, ABC is common. This is a more complex method of interactions of 

original objects. And concluding from the mathematical common notion that "if equals 

are added to equals, the wholes are equal", we derive a property of this interaction. In 

the more simple and familiar mathematical language: "Since ABF=CBD: for each is 

right: let the angle ABC be added to each; therefore the whole FBC=ABD". In the 

Altshuller's Principles, equality likewise plays an important part. The Principle 1 deals 

with objects by dividing into or unification of equal parts. Equal defines unequal.  

 

Figure 4 



 

From Angles to Triangles. The next elements in the 

construction are triangles BCF and BAD (Figure 6). 

Contrary to points, lines, and angels, they have area, a 

target of our interest. These triangles consist of parts 

belonging to both squares. Each triangle has a short side 

belonging to the smaller cathetus square, and long side 

belonging to the larger square of hypotenuse. They have a 

common vertice B which belongs to every figure. As it 

was figured above, the angles FBC=ABD. That, by the 

Euclid theorem 1.4, makes the triangles congruent. Now 

another required property appears: equality of areas.  

The Same, but Different. Triangles BCF and BAD are different, but from another 

point of view, it is the same triangle rotated around B. In the static consideration the 

triangles are different, if allowing mathematical transformations - they are the same, the 

same thing in two incarnations. In the terms of the 

"Junctions" book, these are two different system worlds. 

Yet Another View on the System: The Final Push 

(Figure 7). Figures ABFG and BCF are contained 

between two parallel lines CG and BF, and have the 

same base: BF. For such figures there is a property: the 

area of CBF=1/2 of the area of ABFG (or, in a more 

common form, the area of BCF=the area of ABF, and 

ABFG=2ABF). And the same for the parallel lines AL 

and BD: ADB=1/2BOLD. 

Therefore, BOLD=ABFG. Making the same process with 

the right part, concluding, BCED=ABFG+ACKH. The proof is finished.   Q.E.D. 

 

 

 

 

 

 

 

Figure 6 

 

Figure 7 



 

Parallel lines were already a canvas on which 

our triangle and squares were incorporated 

(Figure 8). We have made use of that laying the 

final block into the building. 

System Levels Line of the Proof. In geometry, 

the system hierarchy can be built this way: 1) a 

point; 2) two points form a system with the 

system property: distance; 3) infinite number of 

points + some rules form a line, a straight one in 

our case; 4) two straight lines and a point form 

an angle (note that angles are measured by 

distances of three pairs of points in a triangle); 

5) a triangle as a collection of lower systems 

consisting of lines, points, three distances and 

three angles; 6) a triangle as a plane figure with area, it is a higher systematic level. 

Area is a system property of plane figures. 7) a square as a collection of points, lines, 

angles, and distances ("sides are equal"). 8) A square having a system property "area". 

There is another system used: a pair of parallel lines. I have difficulty defining its 

hierarchical level, we can assume that it is an the level of angles, 4). 

The line of proof is this: 8) squares with areas --> 7) non-area properties of a square --> 

4) angles --> 5) triangles (not working with area) --> 4) parallel lines --> 8) triangles 

and squares as plain figures with area. I see it as jumping from a systematic level down 

to a lower level (done three times) and up. In other words, the proof follows the general 

idea of switching to lower levels, finding a conclusion there and returning up. 

Two pairs of parallel lines used in the proof should be a higher level than 7). Their 

intersection is a parallelepiped, which a square is. The pair of parallel lines is on a 

higher level than the square, since the square is the system property of the pair. It is 

difficult to set up what is on the higher level in mathematics: a pair of points define a 

line, but a line consist of points. Both are valid statements. And it can be used in both 

ways. We do use two pairs of parallel lines here, but only in relation to areas of a 

containing square and a triangle. It can be viewed in another way: when a square and a 

triangle are put within the canvas of certain parallel lines, their areas follow the strict 

rule ABFG=2ABF. 

There is one more mechanism of interactions. There is no time in mathematics, but the 

process of our thought take time. There is a sequence of logical steps in proofs and 

constructions. The order of those are the "timelines" which can be a basis of interaction 

 
 

Figure 8 



and establishment of a system hierarchy (choosing what is a part of what) in 

mathematics. 
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